Geodesign Advances: Machine Learning and Geodesign – Part 1

Summary

This article is a part of a series that I call as “Geodesign Advances” where I talk about how Geodesign Hub uses state-of-the-art computing technologies to help the process of collaborative design. In this article, I will describe how we implement machine learning algorithms to help people who design to collaborate and interact with each other.

Geodesign with Geodesign Hub

Geodesign Hub is a platform for collaborative designing. With Geodesign Hub, a number of people can simulteanously design and negotiate complex geo-planning problems. We usually have anywhere from 15-60 people from different disciplines and professional specialities and even ordinary citizens working simultaenously on a project. A project can be anything from designing a city, making a evacuation plan, preparing for dramatic change in a neighbourhood etc. Geodesign Hub is easy to understand and get started, we usually have been able to train people on the capabilities within 30 minutes.

Designing with Diagrams

Geodesign Hub works especially well on early stages of a design problem and is used with a group of people doing the design activity togther. To begin with, people get together and draw simple diagrams on a map to communicate their idea for improving the current state. Below is a diagram drawn on the tool. It describes a Marsh Restoration project. People add a lot of diagrams and usually a project has many diagrams: usually more than 200 some shown in the picture below.

diagram-single
Single Diagram

all-diagrams
Many Diagrams in a project
These diagrams are drawn indiviually by different people in real time. We use the power of modern computing and machine learning tools to aid people when they draw diagrams.

What is machine learning?

Machine Learning, Aritificial Intelligence and Deep Learning are used interchangably now-a-days. Bascially, Arthur Samuel described it as: “the field of study that gives computers the ability to learn without being explicitly programmed.”

Machine learning is very prevenlant and used in a number of things that you use everyday. For e.g. when Netflix makes movie suggestions or Gmail filters spam or Amazon recommends similar products, they are using machine learning algorithms that get better over time as they analyze more data.

I dont want to get too much in to Machine learning specifics but basically machine learning algorithms fall into two main categories (there are others as well):

  • Supervised Learning Algorithms
  • Unsupervised Learning Algorithms

In supervised learning, the “right answer” is given by the algorithm based on previous data that it analyzes: i.e. a algorithm predicting a sale price for a house; or if a email is spam or not.

In unsupervised learning, there is no “training data”. Data is fed into the algorithm and the algorithm then analyzes the data to find patterns. This technique is used commonly for example in Google news, when different news articles are grouped together under the same title. The alogrithm understands that all the articles are talking about the same event without it having any understanding of the event itself. This technique has other applicaitons: it can also be used to segment customers in marketing.

Brief aside: I am currently enrolled in a the brilliant Machine Learning Course in Coursera by Prof. Andrew Ng. If you are interested in this topic and want to learn more about this, I would highly recommend this course. I learnt all of the above from there.

How can machine learning help geodesign?

At Geodesign Hub we use both supervised and unsupervised learning algorithms to help in the design process, I will write about how we use supservised learning in another article but for this one, I will focus on how we use unsupervised machine learning to help designers.

As I described in the beginning of the article, the participants in a project are drawing different design ideas and interventions to “improve” the problem that a area is facing. Frequently, given the diverse participants, many people have different ideas for the same place: someone might say a empty lot should be converted into a public park, others may think it is better to have parking, while others may think that it is better to build mixed use spaces there. This is what people are drawing in diagrams.

Show other ideas people have in realtime

When you have so many diagrams, it can be hard to figure out what is the content of every diagram. If I am working on the downtown area, I am only concerned about what other people think should happen in the downtown and I should be shown only the diagrams (among the 200+) that are relevant to downtown. We use supervised learning to show diagrams in a area in realtime. This is shown in the video below.

We start in a broad study area and as I zoom and pan to the area of my interest, the “nearby diagrams” is constantly updated. The algorithm understands where you are in the study area and then shows ideas that other people have for this place so you know beforehand the ideas and encourages you to discuss your idea with the others to see if both can work.

This slideshow requires JavaScript.

Observe as I pan the map, “diagrams nearby” changes and updates. What is going on in the backend is that the platform is running a machine learning algorithm to figure out where you are on a map and it shows relevant diagrams nearby having analyzed in realtime all the 200+ diagrams. This is kind of like Netflix recommendations or Amazon related products except you are shown other design ideas. Now that we know that there are others who have suggestions for this place, I can go and discuss their ideas and hopefully accomodate them in my plan.

Facilitating communication and negotiation

I just demonstrated how we use unsupervised learning to analyze existing diagrams drawn in a place and then show them so that the person drawing a new one knows what idaes others had. This enables smooth negotiation and more importantly better understanding of what ideas others have for a place. There are many things that I can discuss reagrding the technical aspects of this, let me know if you would like me to show that as well. All of this state of the art technology is available for free in Geodesign Hub.

In the next article in the series I will show how we use supervised machine learning to help infer the intent of a diagram.

 

 

 

 

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s